We investigate automating the task of segmenting structures in head and neck CT scans, to minimize time spent on manual contouring of structures of interest. We focus on the brainstem and left and right parotids. To generate contours for an unlabeled image, we employ an atlas of labeled training images. We register each of these images to the unlabeled target image, transform their structures, and then use a weighted voting method for label fusion. Our registration method starts with multi-resolution translational alignment, then applies a relatively higher resolution affine alignment.